skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tan, Jasper"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Is overparameterization a privacy liability? In this work, we study the effect that the number of parameters has on a classifier's vulnerability to membership inference attacks. We first demonstrate how the number of parameters of a model can induce a privacy--utility trade-off: increasing the number of parameters generally improves generalization performance at the expense of lower privacy. However, remarkably, we then show that if coupled with proper regularization, increasing the number of parameters of a model can actually simultaneously increase both its privacy and performance, thereby eliminating the privacy--utility trade-off. Theoretically, we demonstrate this curious phenomenon for logistic regression with ridge regularization in a bi-level feature ensemble setting. Pursuant to our theoretical exploration, we develop a novel leave-one-out analysis tool to precisely characterize the vulnerability of a linear classifier to the optimal membership inference attack. We empirically exhibit this "blessing of dimensionality" for neural networks on a variety of tasks using early stopping as the regularizer. 
    more » « less
  2. A surprising phenomenon in modern machine learning is the ability of a highly overparameterized model to generalize well (small error on the test data) even when it is trained to memorize the training data (zero error on the training data). This has led to an arms race towards increasingly overparameterized models (c.f., deep learning). In this paper, we study an underexplored hidden cost of overparameterization: the fact that overparameterized models may be more vulnerable to privacy attacks, in particular the membership inference attack that predicts the (potentially sensitive) examples used to train a model. We significantly extend the relatively few empirical results on this problem by theoretically proving for an overparameterized linear regression model in the Gaussian data setting that membership inference vulnerability increases with the number of parameters. Moreover, a range of empirical studies indicates that more complex, nonlinear models exhibit the same behavior. Finally, we extend our analysis towards ridge-regularized linear regression and show in the Gaussian data setting that increased regularization also increases membership inference vulnerability in the overparameterized regime. 
    more » « less
  3. We introduce a new neural signal model designed for efficient high-resolution representation of large-scale signals. The key innovation in our multiscale implicit neural representation (MINER) is an internal representation via a Laplacian pyramid, which provides a sparse multiscale decomposition of the signal that captures orthogonal parts of the signal across scales. We leverage the advantages of the Laplacian pyramid by representing small disjoint patches of the pyramid at each scale with a small MLP. This enables the capacity of the network to adaptively increase from coarse to fine scales, and only represent parts of the signal with strong signal energy. The parameters of each MLP are optimized from coarse-to-fine scale which results in faster approximations at coarser scales, thereby ultimately an extremely fast training process. We apply MINER to a range of large-scale signal representation tasks, including gigapixel images and very large point clouds, and demonstrate that it requires fewer than 25% of the parameters, 33% of the memory footprint, and 10% of the computation time of competing techniques such as ACORN to reach the same representation accuracy. 
    more » « less
  4. Conventional continuous-wave amplitude-modulated time-of-flight (CWAM ToF) cameras suffer from a fundamental trade-off between light throughput and depth of field (DoF): a larger lens aperture allows more light collection but suffers from significantly lower DoF. However, both high light throughput, which increases signal-to-noise ratio, and a wide DoF, which enlarges the system’s applicable depth range, are valuable for CWAM ToF applications. In this work, we propose EDoF-ToF, an algorithmic method to extend the DoF of large-aperture CWAM ToF cameras by using a neural network to deblur objects outside of the lens’s narrow focal region and thus produce an all-in-focus measurement. A key component of our work is the proposed large-aperture ToF training data simulator, which models the depth-dependent blurs and partial occlusions caused by such apertures. Contrary to conventional image deblurring where the blur model is typically linear, ToF depth maps are nonlinear functions of scene intensities, resulting in a nonlinear blur model that we also derive for our simulator. Unlike extended DoF for conventional photography where depth information needs to be encoded (or made depth-invariant) using additional hardware (phase masks, focal sweeping, etc.), ToF sensor measurements naturally encode depth information, allowing a completely software solution to extended DoF. We experimentally demonstrate EDoF-ToF increasing the DoF of a conventional ToF system by 3.6 ×, effectively achieving the DoF of a smaller lens aperture that allows 22.1 × less light. Ultimately, EDoF-ToF enables CWAM ToF cameras to enjoy the benefits of both high light throughput and a wide DoF. 
    more » « less
  5. null (Ed.)
    The standard pipeline for many vision tasks uses a conventional camera to capture an image that is then passed to a digital processor for information extraction. In some deployments, such as private locations, the captured digital imagery contains sensitive information exposed to digital vulnerabilities such as spyware, Trojans, etc. However, in many applications, the full imagery is unnecessary for the vision task at hand. In this paper we propose an optical and analog system that preprocesses the light from the scene before it reaches the digital imager to destroy sensitive information. We explore analog and optical encodings consisting of easily implementable operations such as convolution, pooling, and quantization. We perform a case study to evaluate how such encodings can destroy face identity information while preserving enough information for face detection. The encoding parameters are learned via an alternating optimization scheme based on adversarial learning with deep neural networks. We name our system CAnOPIC (Camera with Analog and Optical Privacy-Integrating Computations) and show that it has better performance in terms of both privacy and utility than conventional optical privacy-enhancing methods such as blurring and pixelation. 
    more » « less